بنجر السكر

 بنجر السكر

• تعتبر المحاصيل السكرية أحد أهم مجموعات المحاصيل فى العالم نظرا لارتباطها الوثيق بالصناعة فى المجتمعات التى تزرعها.(مامعنى محصول استراتيجى؟) 
• ومن المعروف أن مجموعه المحاصيل السكرية لا تزرع إلا فى نطاق أحد مصانع السكر.
• لهذا نجد نوعا من المركزية فى إنتاج هذه المحاصيل.
• كما أن مثل هذا التجمع لزراعات المحاصيل السكرية يؤدى إلى خلق مجتمعات من نوعيه خاصة ، وتسرى هذه الظاهرة فى جميع مناطق إنتاج المحاصيل السكرية تقريبا فى كل أنحاء العالم.
الاهمية الاقتصادية
• يستهلك الإنسان على مستوى العالم كميه تقدر بحوالى عشرون 
• يمكن تقسيم دول العالم إلى: 
دولا مستهلكة فقط مثل معظم دول العالم العربى
دولا منتجة ومستهلكة مثل الهند و الصين و امريكا
دولا منتجة ومصدرة مثل البرازيل والاتحاد الاوروبى
دولا منتجة ومستوردة مثل مصر

• معظم الدول تعتمد على الزراعة المطرية
• السكر المنتج من دول الاتحاد الاوروبى كله من بنجر السكر
• تتحكم ثلاثة دول فقط فى حوالى 40% من انتاج السكر العالمى
• أختفى دور الاتحاد السوفيتى السابق كمنتج للسكر
أهم الدول المصدرة (مليون طن)
ملاحظات عامة على التصدير
• تحتكر دولتان فقط حوالى 25 % من سوق التصدير
• اختفى دور الهند والصين وامريكا ( 25% من الانتاج العالمى) تماما من سوق التصدير
• ظهور دول لها حصة قوية فى السوق رغم عدم ضخامة انتاجها
• الدور الخاص للبرازيل فى تجارة السكر العالمية
أهم الدول المستوردة (مليون طن)
و للحصول على بيانات انتاج السكر العالمية لآخر مواسم انتاج متاحة يمكن الرجوع إلى مواقع الانترنت الآتية
• www.iso.org موقع منظمة السكر العالمية 
• www.fao.org موقع منظمة الاغذية والزراعة للامم المتحدة 
الحلول العملية للعجز فى الانتاج
• خفض الاستهلاك الفردى
• زيادة الانتاج المحلى عن طريق:
1- التوسع فى مساحة المحاصيل السكرية ( هل يمكن هذا فى القصب؟ )
2- زيادة متوسط محصول الفدان من السكر ( ما هو الموقف بالنسبة للقصب والبنجر؟ )
3- دور المحاصيل السكرية الثانوية ( الذرة الرفيعة السكرية والذرة الشامية )
4- النباتات المحلية غير السكرية ( مثل الاستيفيا)
بنجــــــر الســــــكر
Sugar beet
Beta vulgaris 
Family Chenopodiaceae
الأهمية الاقتصادية و التوزيع العالمى
لبنجر السكر
• يعتبر بنجر السكر أحد محاصيل المناطق المعتدلة والباردة فى المنطقة من خط عرض 30 ° إلى 60 ° شمالا.
• تتأرجح المساحة المزروعة منه حول 7.5 مليون هكتار سنويا خلال الأعوام الخمسة الأخيرة.
• وفقا لأرقام الإنتاج لموسم عصير2002 فإن أجمالى مساحة البنجر فى العالم قد بلغت 14 مليون فدان تنتج 238.2 مليون طن جذور بمتوسط 17.01 طن للفدان وينتج منها 40.4 مليون طن سكر. 
بيئة بنجر السكر
• ينتشر البنجر فى مدى خطوط عرض من 30 ° إلى 60 ° شمالا. وقد نشأ بمنطقة القوقاز بروسيا. 
• يعنى هذا أن النبات هو محصول مناخ بارد إلى معتدل مائل للبرودة. 
• الظروف البيئية فى منطقة النشوء يسودها البيئة الباردة وقد أدى هذا إلى الانتخاب الطبيعى للطرز المتأقلمة مع المناخ البارد كما أدى بالتبعية إلى انتشار البنجر فى البيئات المشابهة مما جعل بعض المهتمين به يطلقون عليه اسم المحصول الأوروبى.
التربة المناسبة
• وفيما يختص بنوعية التربة المناسبة لبنجر فإن التربة الخفيفة ( لا يعنى ذلك بالضرورة أن تكون رملية ) هى الأفضل للبنجر
• تؤدى الزراعة فى تربة الثقيلة إلى تفرع الجذور وتشوهها مما يخفض من جودتها ويرفع من الكمية المستبعدة عند الفرز فى المصانع ويقلل من العائد المادى للمزارعين.
تابع: بيئة بنجر السكر
• وبمطابقة ظروف منطقة النشوء على حالة نمو المحصول نجد أن لكل طور من أطوار نمو المحصول ظرف مثالى لتحقيق أفضل نمو. 
• فيحتاج النمو الخضرى فى السنة الأولى إلى حرارة معتدلة لتشجيع النمو الخضرى ما بين 4 إلى 20°م.
• ويعقب ذلك الحاجة إلى شتاء بارد لإتمام الأرتباع من صفر إلى 4°م.
• وأخيرا جو معتدل مع نهار طويل للأزهار من 5 إلى 25°م.
الوحدات الحرارية (Heat units)
• ومن العوامل الهامة التى تحدد نجاح زراعة البنجر فى منطقة ما توافر ما يسمى بالوحدات الحرارية (Heat units ) اللازمة للنمو فى تلك المنطقة حيث ثبت أن التركيب الوراثى يتوافق مع بيئة منطقة نشأة صنف ما.
• يجب وجود حد أدنى من درجات الحرارة خلال فصل النمو حتى يمكن نمو الجذر بنجاح وحتى يمكن تخزين السكروز بتركيز مناسب. 
• إذا حدث نقل للصنف إلى منطقة ذات وحدات حرارية اقل من المطلوب فإن المحصول يكون أقل فى كميته. 
• إذا زرع الصنف فى منطقة ذات وحدات حرارية أكثر من المطلوب تنخفض الجودة على حساب وزن الجذور.
• وقد أمكن قياس الوحدات الحرارية كميا بافتراض نقطة تعرف باسم صفر النمو وهى التى يكون التمثيل الضوئى فيها مساويا للتنفس وقدرت فى معظم المناطق بصفر مئوى وفى مناطق أخرى بأربعة درجات مئوية. 
• وتجمع الدرجات اليومية الأعلى من صفر النمو جمعاً تراكمياً خلال موسم النمو ويكون هذا الرقم هو الحد الأمثل لنمو الصنف. 
• كما يقدر البعض الوحدات الحرارية باستخدام متوسط درجة حرارة الليل والنهار أو باستخدام متوسط موزون لدرجات الحرارة اليومية ثم يطرح منها صفر النمو موزوناً أيضاً. 
• تتراوح قيمة الوحدات الحرارية للبنجر من 2000 إلى 2400 وحدة فى المناطق الباردة والمعتدلة الباردة وتصل إلى 3000 وحدة فى المناطق المائلة للدفء.

أطوار النمو فى بنجر السكر
• بنجر السكر نبات ثنائى الحول ينمو خضريا مكونا مجموعا جذريا فى أول موسم ثم يمر بطور كمون وأرتباع يعقبه نمواً زهرياً وثمرياً فى الموسم الثانى.
• يسمى الطور الأول بالطور الحرارى أو طور الأرتباع Thermal or Vernalization phase
• بينما أُطلق على الطور الثانى اسم الطور الضوئى Light phase .
أولاًً الطور الحرارى
• ثبت أن التأثيرات الأساسية التى تتحكم فى تشكل النبات و مروره بأطوار النمو المختلفة تكون راجعة أساساً إلى الحرارة.
• يمكن أن يحدث الأرتباع خلال:
مرحلة انبات البذور
نمو البادرات
ما قبل نضج الجذور
خلال التخزين الشتوى.
• ويتطلب الأرتباع درجة حرارة تتراوح من صفر إلى +5°م لعدد متفاوت من الأيام
ثانياُ الطور الضوئى
• سمى الطور الثانى من أطوار نمو البنجر بالطور الضوئى لأن النباتات تستجيب أساساً للضوء كعامل محدد لتشكل النبات. حيث تتجه النباتات للأزهار إذا ما عرضت لطول نهار متزايد خاصة تحت ظروف الحرارة المعتدلة ما بين 15 إلى 18°م.
• وبصفة عامة يحتاج البنجر ما بين 25 إلى 45 يوما نهار طويل للأزهار الناجح.
• ولا يبدأ الطور الضوئى إلا إذا تم الطور الحرارى عقب عملية الأرتباع. وفى الظروف العادية تمر نباتات البنجر بالطور الضوئى فى الموسم الثانى للنمو.
الأزهار المبكر Early Bolting
• أوضحت الدراسات أن زيادة طول فترة التعرض للحرارة المنخفضة (الأرتباع) خلال بداية الموسم الزراعى تزيد من فرصة حدوث الأزهار خلال الموسم الأول فيما يعرف باسم الأزهار المبكر Early Bolting .
• وهى ظاهرة ضارة بالإنتاج المخصص للتصنيع حيث يؤدى الأزهار إلى خفض نسبة السكروز ورفع نسبة الألياف وزيادة نسبة الجذور المستبعدة عند التصنيع.

إذا لم يحصل النبات على متطلبات الأرتباع فأنه لا يخرج من الطور الحرارى
• وبالتالى لا يستجيب لتأثير الضوء المرتبط بالموسم الثانى وفى هذه الحالة لا يزهر النبات فى الموسم الثانى وتعرف هذه الظاهرة باسم De-bolting
• وهذه الظاهرة هى المسؤولة عن عدم أزهار البنجر

تجهيز الأرض
• يجرى تجهيز الأرض بحرثها مرتين على الأقل بصورة متجانسة عندما تكون نسبة الرطوبة الحقلية 50% ( أرض مستحرثة )
• يعقب الحرث تنعيم التربة وتسويتها ثم تقسيم الأرض إلى خطوط وأحواض لتسهيل الرى
• ويتم التخطيط بمعدل 14 خط / قصبتين (50 سم عرض الخط) حيث تزرع البذور فى جور على مسافات 15 إلى 30 سم على ريشة واحدة. ويوضع عدد مناسب من البذور بكل جورة.
• الزراعة بالسطارات على سطور بينها 45 إلى 55 سم و تسر البذور على مسافات 15 إلى 20 سم بعمق من 2 إلى 3.5 سم.
• الزراعة فى البلاد الأوروبية تتم بالميكنة فى أراضى مستوية على سطور نظرا لانعدام أو قلة الاعتماد على الرى.
صور التقاوى
• توجد ثلاث صور لتقاوى البنجر وهى:
• كرات البذور Seed balls وتحتوى الواحدة من 2 إلى 6 بذور ويستهلك الفدان منها من 6.75 إلى 9 كيلو.
• الثمار المجزأة Crushed balls وتحتوى الواحدة من 1 إلى 2 بذرة ويستهلك الفدان منها من 2.75 إلى 3.6 كيلو.
• البذور المفردة Monogerm seeds وتحتوى الواحدة على بذرة واحدة ويستهلك الفدان منها من 1.8إلى 2.7 كيلو.
الترقيع
• تحت ظروف الإنبات الطبيعية يحدث الإنبات خلال أسبوع إلى ثلاثة أسابيع حسب درجة الحرارة. وينبت بكل جورة عدد من البادرات يختلف حسب نوع التقاوى المستخدم ويتراوح عدد البادرات من 5 إلى 25 بادرة.
• وفى الظروف المثلى قد لا يحتاج المزارع للترقيع إلا أن وجود نسبة من الغياب تصل إلى 5% يوجب القيام بعملية الترقيع بتقاوى من نفس النوع المستخدم فى الزراعة ويجب مراعاة أن أفضل وسيلة للحصول على محصول جذور عالى هى الزراعة المثلى لتحسين الاستفادة بالضوء.
• ويوضح الشكل العلاقة بين مسافات الزراعة ( التوزيع الفراغى فى الحقل) والمناطق الغير مستفاد من الضوء فيها ( المناطق المظللة)
الخف
• فى عمر 3 إلى 4 أسابيع ( طور النمو من 6 إلى 8 ورقات) يجب الانتهاء من عملية الخف.
• قد يجرى الخف مبكرا فى عمر 4 ورقات بحيث يتم الخف على مرحلتين.
• يجب العناية بأداء هذه العملية وإزالة النباتات الضعيفة بجذورها من الأرض وعدم قرطها فوق سطح التربة حتى لا تعاود النمو مرة أخرى.
• بنهاية عملية الخف يكون بكل جوره نبات واحد فقط.
• لا يجرى الخف فى الزراعة الآلية ويستعاض عنه بضبط معدل الزراعة والمسافات بين النباتات واستعمال البذور المفردة.
العزيق
• يجرى العزيق على 3 إلى 4 مرات لغرض مقاومة الحشائش خاصة فى الأعمار المبكرة للنبات
• ويتم تكويم التربة حول قمم الجذور التى قد تنكشف ويؤدى تعرضها لضوء الشمس إلى تلونها باللون الأخضر وتجمع النشا فيها مما يؤدى إلى خفض جودتها.
• فى الخارج يجرى العزيق بالميكنة لمقاومة الحشائش أساسا.
التسميد
• يعتبر التسميد أحد أهم المدخلات فى الزراعة المكثفة.
• يجب عدم الخلط بين التأثيرات العامة المحسنة للنمو للعناصر السمادية وبين تأثيراتها على الجودة.
التسميد الأزوتى
• لوحظ أن نقص النيتروجين البسيط فى التربة يزيد نسبة السكروز فى الجذور من 12.4 إلى 16.8 % كما يؤدى إلى خفض نسب كل من البوتاسيوم ، الصوديوم ، النترات ، الأحماض الأمينية و الأحماض العضوية فى العصير.
• أما وفرة الأزوت فإنها تؤدى إلى زيادة المحتوى المائى للجذور وحجمها. ويؤدى هذا بالتبعية إلى زيادة تكلفة استخلاص السكر.
• كما وجد أن نقص الأزوت الحاد يخفض من محتوى الكلوروفيل وقدرة النبات على التمثيل الضوئى. ويكون هذا التأثير أكثر وضوحا فى الأوراق المسنة عنه فى الأوراق الأحدث سنا. ويحدث النقص فى ناتج التمثيل نتيجة لانخفاض محتوى الكلوروفيل وزيادة درجة مقاومة دخول ثانى أكسيد الكربون خلال الثغور.
• والجرعة المتوسطة للسماد الأزوتى فى مصر فى حدود 60 إلى 80 كيلو نيتروجين تضاف عقب الخف مباشرة
• ويجب تجنب التأخير أو رفع معدل الأزوت لتلافى ارتفاع نسبة Alpha Amino nitrogen compounds لما لها من أثر ضار على جودة البنجر وسعر طن الجذور.
الأسمدة الفوسفورية والبوتاسية
• يسحب محصولا قدره 50 طن من الجذور / هكتار مايلى من الأرض:
65 كيلو فوسفور
235 كيلو بوتاسيوم
بالإضافة إلى 170 كيلو أزوت.
• كقاعدة عامة فأن إضافة الفوسفور ترفع المحصول عند وجود نقص فيه فى التربة وتتميز معظم الأراضى المصرية بوجود ظاهرة تثبيت الفوسفور على التربة.
• وينصح بإضافة 100 كيلو سوبر فوسفات الكالسيوم و 48 كيلو من سلفات البوتاسيوم عند تجهيز الأرض للزراعة.
الرى
• من المعروف أن هناك علاقة واضحة بين الرى والمحصول.
• حيث يؤثر الرى على محصول الجذور والسكر من خلال تأثيره على امتلاء الخلايا واتزانها المائى.
• يؤدى انخفاض كمية المياه التى يحصل عليها النبات إلى نقص محصول السكر بسبب نقص وزن الجذور.
• يؤدى الإفراط فى الرى إلى نقص محصول السكر بسبب خفض تركيز محتوى السكر فى الجذور.
• فى البلاد الأقرب إلى الجنوب حيث الحرارة المائلة للارتفاع يؤدى التعطيش إلى خفض معدل النمو مما يحسن من محتوى السكر فى الجذور.
• وفى البلاد التى تعانى من ندرة نسبية لمياه الرى فأن معامل البخر نتح Evapotranspiration Et يستعمل لحساب كميات المياه المطلوبة للرى.
• وقد وجد أن إنتاج 100 كيلو من الجذور يستهلك من 8 إلى 12 متر مكعب ماء وأن النبات المتوسط النمو ينتح ما يقرب من لتر ماء يوميا. وفى أسبانيا يلزم للبنجر 14 ريه لموسم النمو الكامل.
• وفى مصر فإن الرى يجرى على فترات من 15 إلى 21 يوم مع مراعاة ما يسقط من أمطار
• وقد وجد أن أفضل محصول يمكن إنتاجه بالمحافظة على محتوى رطوبى يماثل 50% من السعة الحقلية على عمق 30 سم تحت سطح التربة.
• يجب إيقاف الرى قبل الحصاد بمدة 3 إلى 4 أسابيع.
مقاومة الآفات
• يهاجم البنجر العديد من الآفات من مجاميع مختلفة وأهمها:
• آفات حشرية مثل الحفار ، الدودة الخضراء ، الدودة القارضة ، دودة ورق القطن ، دودة اللوز القرنفلية ، المن ، العنكبوت الأحمر , ذبابة أوراق البنجر.
• أمراض مثل الذبول ، تبقع الأوراق ، عفن الجذور البنفسجى ، عفن الجذور الطرى ، التدرن التاجى.
• النيماتودا.
النضج والحصاد
• ينضج البنجر بعد ستة إلى سبعة شهور تحت الظروف المصرية.
• وتقلع الجذور يدويا فى مصر بعد فك سطح التربة بمحراث حفار ثم تزال الأوراق وتنظف الجذور من الطين
• ويجب أن يبدأ الحصاد عند وصول محتوى السكر لأفضل ما يمكن.
• قد يحصد البنجر قبل الوصول لأعلى محتوى سكر لضمان تشغيل المصانع لمدة اقتصادية.
• ويميز نبات البنجر الناضج باللون البنى للأوراق السفلية والأصفر للأوراق العلوية وفقدان قدرة الامتلاء للأوراق العلوية (الذبول الغير مرضى) وارتفاع محتوى المادة الصلبة الذائبة الكلية.

محصول الذرة البيضاء

 محصول الذرة البيضاء



الذرة البيضاء أو الذرة الرفيعة نوع نباتي حولي يتبع جنس السورغم من الفصيلة النجيلية اسمه العلمي(sorghum bicolor) 
1/ تحضير الارض :
1. ينصح بان تبدأ عملية تحضير الارض بنهاية شهر مارس.
2. تنظيف الارض من الشجيرات الصغيرة والحشائش المعمرة بالآلات اليدوية.
3. تحرق بقايا النياتات السابقة كأول خطوة فى عملية التحضير الجيد للارض.
4. تحرث الارض بمحراث او بالطورية لتمهيدها هذه العملية لحرث التربة وتكسير الى اجزاء صغيرة هذه العملية تقضي على البيض والاطوار المتحوصلة للحشرات.
2-تأسيس المحصول :
§ القطاع المروي : استخدام محراث قرصي ثم دسك هرو ثم تسطيح ثم طراد على أبعاد 80 سم .
§ القطاع المطري الآلي : المشط القرصي (دسك هرو) وبعد هطول الأمطار وعند وقت الزراعة بالدسك العري
3/ كمية البذور/ (مخمس) وكيفية معاملتها بالمبيدات (المعفرات):
1. يحتاج المخمس ما بين 2-3 كجم من البذور.
2. تعامل البذور بمبيد الفيرنسان او اي مطهر آخر موجود بمخازن وقاية النباتات او الادارة العامة للخدمات الزراعية، تتم المعالجة بالجرعة الموصي بها.
3. توضع فى كل حفرة 3-4 بذرة، المسافة بين الحفرة والاخري داخل الصف 20-30 سم والمسافة بين الصفوف 50 سم.
4/ مواعيد الزراعة:
- تعتمد مواعيد الزراعة على بداية موسم الامطار:
- المروي : 15/6 – 15/7
- المطري : 1/7 – 22/7 حسب هطول الامطار (الاسبوع الاول من يوليو وحتى الاسبوع الثالث من يوليو
إزالة الحشائش:
- يحتاج نبات الذرة الى عمليتي نظافة أثناء الموسم وذلك للحصول على نبات قوي وعليه نوصي بالآتي:
- عملية النظافة الاولي تكون بعد 2-3 اسابيع بعد الزراعة.
- عملية النظافة الثانية تكون بعد 6 اسابيع بعد الزراعة.
- يتم إزالة الحشائش التى تنمو بجوار النبات والتى بين النباتات باليد او الكدنكة.
5/ الشلخ:
يشلخ النبات الى 3 نباتات فى كل حفرة، يتم القضاء على النباتات المصابة حتى لا تنقل الاصابة الى النباتات السليمة.
6/ حصاد البذور:
1. إختيار على الاقل 100 سنبلة (قندول) سليم.
2. نبدأ بقطع وتجميع هذه السنابل فى كوم منفصل.
يجب ترك البذور بقناديل الذرة.
7/ حصاد المحصول:
- قطع المتبقي من قناديل الذرة وتجميعه فى كوم آخر.
- نظافة المحصول عن طريق دقه وتذريته ثم بعد ذلك يخزن فى المخازن التقليدية المشيدة من المواد الطينية الجيدة التهوية.
- التخزين:
- يجب نظافة ارضية المخزن ثم تغطي بصفق اشجار النيم او بنثر الملح العادي، فى حالة مخازن الطين ينصح بان ترش بالمبيدات الحشرية قبل عمليات التخزين و يجب نظافة محصول الذرة من الشوائب وتخزينه بطريقة سليمة تضمن التهوية الجيدة، ويراقب المخزن بصورة دورية لمكافحة اي حشرات او فئران تظهر.
- 9/ البذور (التقاوي):
- سنابل الذرة المختارة للبذور يجب حفظها معلقة بالقرب من مكان النار او الراكوبة وعندما يحين موعد الزراعة يجب فصل البذور من السنابل.
- التسميد : في المروي 80 كجم يوريا / فدان تضاف عند الزراع
- الـري : في المروي كل 10 – 14 يوم

- 10/ انواع الذرة :
- أصناف المناطق متوسطة – كبيرة الأمطار (500 ملم) فما فوق:
ود أحمد ، قدم الحمام ، طابت، هجين ذره ، هجين شيكان ، هجين رابح ، هجين بانار .
أصناف المناطق قليلة الأمطار (450 ملم وما دون ):
عروس الرمال ، يارواشا ، المايلو الابيض القصير ، بشائر وبطان

الدخن

الدخن


1-1الأصناف :
الأصناف المحلية وتشتمل على :
·بيوضه : ويزرع بولايات دارفور .
·دمبي : ويزرع بولايات كردفان .
الأصناف المُحسنة صنف عشانا .
1-2تأسيس المحصول : معظم المحصول يُزرع بالأراضي الرملية بغرب السودان وإمتدت زراعته في بعض مناطق الزراعة الآلية بالسودان .
1-3مواعيد الزراعه : الاسبوع الأخير من يونيو إلى الاسبوعين الاولين من يوليو .
1-4مُعدل التقاوي : نحو 1.5 كجم / الفدان ويتم تعقيم البذور بمُبيد ثيرام او قاوشو 3 جرام لكل كجم من البذور .
1-5مسافات الزراعه :
§المسافه بين الفراول (الخطوط) هي 75 سم .
§المسافة بين الحفر 50 سم .
1-6طريقة الزراعه : توضع 5 – 6 حبات في الحفره وتشلخ الي 2 – 3 نباتات .
1-7الآفات والأمراض :
§مُكافحة الحشائش : الاولى بعد اسبوعين إلى ثلاثة من الزراعه .
§الحشه الثانية : تتم بعد اسبوعين الى ثلاثة من الاولى .
§الحشرات : النفاشه ، الجراد ، الطيور والفأر .
§الأمراض : البياض الذغبي ، السويد ، طفيل البودا .
الحصـاد : يتم قطع القناديل عند جفافها ومن ثم تتم عملية الدق

الذره الشاميه

الذره الشاميه


1-1 الأصناف :
§ أصناف مفتوحة مثل حديبه 2 ، والصنف 113
§ أصناف هجين مثل بان 6480 وبان 6578 كما يزرع اصناف استوردت من مصر جيزه2 ، مجتمع 45 .
1-2 تأسيس المحصول :
§ القطاع المطري : عند هطول الأمطار مشط قرصي (دسك هرو)، وعند وقت الزراعة إستخدام الدسك العريض .
§ القطاع المروي : محراث قرصي ثم تنعيم دسك هرو ثم تسطيح ثم تسريب .
1-3 مواعيد الزراعة :
§ القطاع المطري : يوليو حسب الأمطار .
§ القطاع المروي : الأسبوع الاول من يوليو
1-4 معدل التقاوي : من 4 – 5 كجم / فدان .
1-5 مسافات الزراعه : 80 سم بين السراب و 25 بين النباتات .
1-6 رعاية المحصول : الشلخ يتم شلخ النباتات الى واحد نبات لكل حفره بعد اسبوعين من الزراعة
1-7 الـري : 10- 14 يوم
1-8 التسميد :
§ المروي : جرعتان 80 كجم يوريا للفدان تُضاف عند البدايه أو مع الرية الثانية .
1-9 إدارة الآفات و الأمراض :
§ مُكافحة الحشائش : يجب أن تُزال يدوياً أو كيماوياً وخاصة خلال الاسابيع الاولى من الزراعة .
§ مُكافحة الحشرات : حشرة ثاقبة الساق مُكافحتها الزراعه في المواعيد الموصى بها .
1-10 الحصـاد :
§ 100 – 110 يوماً من الزراعة في الاصناف مفتوحة التلقيح .
§ 95 – 110 يوماُ في الاصناف الهجين .

امراض المحاصيل الزيتية تشخيصها وطرق المقاومة


 
تصاب المحاصيل الزيتية التي تزرع بغرض إنتاج الزيوت فقط مثل الفول السودانى والسمسم وعباد الشمس والكانولا والقرطم بالعديد من الامراض الهامة التي تسبب خسائر فى المحصول ونسبة الزيت كمآ ونوعآ وبالتالي تؤدى إلي زيادة الفجوة الزيتية كذلك قد تؤدى الإصابة بالامراض إلي نقص المساحة المنزرعة من هذه المحاصيل نتيجة إصابتها ببعض الامراض الخطيرة وبالتالي يؤدى إلي نقص إنتاج الزيوت و زيادة الفجوة الزيتية بطريقة غير مباشرة. وسنتناول هنا أهم المشاكل المرضية التي تسبب عائقاً حقيقياً في إنتاجية المحاصيل الزيتية بالإضافة إلى محاوله إلقاء الضوء على أهم أساليب المقاومة الفعّالة في تقليل الإصابة بهذه الأمراض والحد من إنتشارها.
أمراض الجذور والسوق Roots and Stems Diseases 
أولاً: موت البادرات وأعفان الجذور Damping-off and Root rot
يسبب المرض مجموعة من فطريات التربة أهمها Fusarum solani, Macrophomina phaseolina, Rhizoctonia solani, Sclorotium rolfsii, Pythium  spp.     وتصيب هذه المجموعة من الفطريات كل المحاصيل الزيتية حيث تهاجم البذور عند إنباتها مما يؤدي إلي موت البذور قبل الظهور فوق سطح التربة أما أهم أعراض موت البادرات هو ظهور تقرحات غائرة علي الجذور وفي منطقة التاج مع ملاحظة إن هذه التقرحات في الفول السوداني يمكن أن تظهر في مراحل متأخرة علي الإبر فيما يعرف بمرض Limb rot والمسبب الرئيسى له Rhizoctonia solani.


بالنسبة لأعفان الجذور تتميز الأعراض في صورة ذبول و إصفرار للأوراق و سقوطها إلي جانب سهولة إقتلاع النباتات المصابة من التربة نظراً لتعفن الجذور.ونظراً للتداخل ما بين هذه الفطريات في الأعراض وإحداث الإصابة كان من الصعب الوقوف علي حجم خسائر كل فطر علي حدي إلا إنه بصفة عامة تصل الخسائر في الأرض الموبؤه إلي 50% . ويعتبر الإفراط في الري والتسميد الأزوتي وزراعة بذرة ملوثة إلي جانب زراعة أصناف غير مقاومة والتبكير في الزراعة خاصةً في الوجه البحرى من أهم الظروف المهيئة لإحداث الإصابة.
ثانياً: مرض الذبول الوعائي Wilt


يسبب المرض مجموعة من فطريات التربة أهمها Verticillium albo-atrum, Fusarium oxysporum ويعتبر فطر Fusarium oxysporum, هو الأكثر إنتشاراً وتظهر الأعراض في صورة ذبول و إصفرار للأوراق التي ما تلبث أن تجف وتموت عند إشتداد الإصابة وأهم ما يميز المرض هو وجود تلون للحزم الوعائية للساق يظهر عند شق النبات طولياً ولابد من ملاحظة أن في كثيراً من الأحيان يظهر مرض الذبول ملازم لأعفان الجذور وذلك لتشابه الإحتياجات البيئية وظروف الإصابة. ويعتبر الإفراط في الري والتسميد الأزوتي وزراعة بذرة ملوثة إلي جانب زراعة أصناف غير من أهم الظروف المهيئة لإحداث الإصابة
ثالثاً: عفن الساق Stem Rot
يسمي أيضاًفي الفول السوداني باللفحة الجنوبية ، العفن الأبيض، عفن أو لفحة الإسكليورشيم ويسببه فطر Sclerotium rolfsii والطور الجنسي له Corticium rolfsii ويكون أكثر نشاطاً قرب سطح التربة (صفة عامة لهذا الجنس) حيث يعتبر من الفطريات المحبة للأوكسجين والتي تحاول بذلك الهروب من المنافسة لغياب العديد من الفطريات في العشرة سنتيمتر الأولي من سطح التربة.
وأهم الأعراض ذبول الساق الذي يبدأ علي فرع واحد في البداية ثم يمتد لباقي الأفرع ويغطي الساق المصابة قرب سطح التربة نمو ميسليومي أبيض كثيف خاصة إذا توافرت أوراق الغطاء النباتي. ويعتبرالرطوبة النسبية المنخفضة التي تشجع إنبات الأجسام الحجرية والغطاء النباتي الكثيف الناتج من ضيق مسافات الزراعة إلي جانب الإفراط في التسميد الأزوتي وزراعة بذرة ملوثة و أصناف غير مقاومة والتبكير في الزراعة من أهم الظروف المهيئة لإحداث الإصابة.
رابعاً:العفن الفحمي Charcoal Rot


يسمي أيضا بالعفن الجاف ويسببه فطر Macrophomina phaseolinaوتظهر الأعراض في وقت متأخر من الموسم غالباً وتكون في صورة تلون الساق باللون البني المسود عند إتصاله بالتربة وتمتد الإصابة إلي أعلي الساق نحو الفروع وإلي أسفل نحو الجذور, تذبل النباتات وتموت ومن المظاهر المميزة تلون النبات بلون سخامي أسود نتيجة لتكوين الفطر للأجسام الحجرية التي يمكن رؤيتها عند نزع القشرة.
ويعتبر هذا المرض من أهم الأمراض التي تهدد زراعة السمسم في مصر خاصة في الوجه القبلي حيث تصل نسبة الإصابة في كثير من الأحيان إلي 100%. هذا ويعد عدم إنتظام الري خاصة التعطيش من أهم العوامل المهيئة للإصابة لإنها تحفذ وتزيد من ضراوة الفطر وتكوينه للاجسام الحجرية هذا إلي جانب الإفراط فى التسميد الأزوتي وزراعة بذرة ملوثة و أصناف غير مقاومة والتأخير في الزراعة.
خامساً: العفن التاجي Crown Rot
من الأمراض التي بدأت تشكل خطورة في الوقت الحالي علي زراعات الفول السوداني حيث سجلت أكثر من حالة إنتشار للإصابة في مناطق الزراعة في النوبارية ووادي النطرون, والمرض يسببه فطر Aspergillus niger وهو من الفطريات سريعة الإنتشار ويتميز بغزارة جراثيمه حيث تنبت مكونة هيفات تخترق السويقة الجنينية أو الأوراق الجنينية مباشرةً.
يمكن أن تصاب البذور حالما توضع في ظروف رطبة وتصبح مغطاة بكتل من الجراثيم السوداء, يصيب الفطر السويقة الجنينية لتصبح مشبعة بالماء لونها بني فاتح مغطاة بالجراثيم الكونيدية السوداء، تذبل النباتات وتموت في خلال 30 يوم مع ملاحظة إن زيادة رطوبة التربة عن طريق الري مع التسميد المتوازن يمكن أن يشجع النبات علي تكوين جذور عرضية تؤدي إلي إستعادة النبات لوضعه الطبيعي نموه بصورة جيدة مرة أخرى.
ويعتبر رطوبة التربة في مرحلة الإنبات من أهم العوامل المهيئة للإصابة لإنها تحفذ جراثيم الفطر علي الإنبات وتساعده في عملية الإختراق كما أن من أهم العوامل الأخرى تأخر عملية الإنبات في وجود إرتفاع في درجة حرارة التربة وهذا في الغالب يحدث في حالات التأخير في الزراعة.
سادساً: العفن الساق الأسكلروتيني Sclerotina Stem Rot




يصيب هذا المرض بعض المحا صيل الز يتية مثل عباد الشمس والكانولا تحت ظروفنا المصرية ويسبب المرض فطر sclerotiorum Sclerotina وتظهر الأعراض في صورة بقع بنية علي الساق في منطقة التاج وتصفر الأوراق وتنحني الساق وتنكسر نتيجة لللإصابة وتجف النباتات وتموت وتظهر الأجسام الحجرية في سلاسل متراصة فوق بعضها داخل الساق.
ويعتبر الإفراط في الرى و إنخفاض درجات الحرارة وزراعة بذرة ملوثة بالأجسام الحجرية للفطر وكذلك وجود بقايا النباتات الحاملة للفطر من أهم مصادر العدوي والعوامل المهيئة للإصابة. وتصل نسبة الحسائر في المحصول إلي 5% في الكانولا و10% في عباد الشمس.
المقاومة:
1- فرز البذرة جيداً قبل الزراعة لإن كل هذه الأمراض يمكن أن تحمل علي البذرة.
2- معاملة البذرة بأحد المطهرات الفطرية(فيتافكس- ثيرم أو ربزولكس- ت بمعدل 3جم/كجم بذرة) قبل الزراعة حيث تخلط به جيداً في وجود الصمغ العربي كمادة لاصقةوتترك لتجف قبل زراعتها.
3- الإهتمام بإضافة العقدين فب الفول السوداني حيث ثبت دورها المهم في عملية تحفيز المقاومة مه ملاحظة إستخدام البكتريا الخاصة بالفول السوداني ( (Rhizobium lupin مع زيادة الفدان كيس لتعويض الفاقد نتيجة لإضافة المبيد للبذرة.
4- زراعة الأصناف المقاومة.
5- الزراعة في المواعيد المثلي لتقليل الإصابة حيث إن التبكير أو التأخير يزيد من الإصابة مع إتباع دورة زراعية.
6- الإهتمام باتسميد البوتاسي والفوسفوري مع عدم الإفراط من التسميد النيتروجيني والتأكد من مصدر التسميد البلدي وبأنه جيد التحلل.
7- الإهتمام برش العناصر الصغري حيث تلعب دور هام في زيادة مقاومة التبات.
8- الإهتمام بالري بحيث يكون منتظم لإن التعطيش أوالتغريق يزيد من الإصابة.
الأمراض التي تصيب الأوراق والثمار Leaves and fruits diseases
أولاً: تبقع الأوراقLeaf Spot





في الفول السوداني يعتبر من أهم أمراض المجموع الخضري ويعرف بمرض تبقع الأوراق السركوسبورى أو ما يعرف بالتيكا (Tikka) أو الفيرولا (Viruela) أو تبقع الأوراق الميكروسفيرللي نسبة للطور الجنسي للفطر المسبب هو علي الإطلاق من أهم أمراض المجموع الخضري في العالم ومصر وينتشر في حالة الري بالرش أكثر من أي أسلوب ري آخر.
المسبب المرضى هو فطرCercospora والطور الجنسي له Mycosphaerella وهناك نوعين من الفطر الأول يسبب اتبقع المبكر للأوراق C. arachidicola ويظهر بعد شهرمن الزراعة والأخر يسبب التبقع النتأخر C. personatum ويظهر بعد شهرين من الزراعة. وتظهر الأعراض في صورة بقع صغيرة شاحبة تكب رفي الحجم وتصبح بنية اللون وتكون غير محددة الشكل ومحاطة بهالة صفراء في حالة فطر و شبه دائرية غير محاطة بهالة في حالة فطر كما إنه من المظاهر المميزة له تلون البقع علي السطح السفلي باللون الأسود، بتطور الإصابة تتساقط الأوراق. يجب ملاحظة تداخل فطر الألترناريا مما يؤدي لحدوث تغيرات في مظهر الإصابة. ويعتبر الري بالرش ولإرتفاع الرطوبة والحرارة مع زيادة التسميد الأزوتي من أهم العوامل المهيئة لللإصابة.
ثانياً: تبقع الأوراق الألترناري Alternaria leaf spots



يسبب هذا المرض فطر Alternaria حيث يصاب السمسم بفطر A. sesami وعباد الشمس بفطرA. helianthi بينما الكانولا يصاب بـ A. brassica وتظهر الأعراض في صورة بقع بنية اللون كبيرة الحجم مستطيلة أو بيضاوية الشكل وأهم ما يمبزها وجود حلقات متداخلة لونها بني مسود وبشدة الإصابة تتساقط الأوراق وتصبح النباتات شبه عارية من الأوراق. وقد تصل الإصابة إلي السوق والقرون والبذور أيضاً مما يؤدي إلي خسائر كبيرة في المحصول.
ثالثاً: أمرض البياض الزغيي Downy mildew
يصيب هذا المرض كلاً من عباد الشمس والكانولا وعادةً يكون مصاحب لأمراض الأصداء و ينتشر في محافظات شمال الدلتا حيث إرتفاع الرطوبة وإنخفاض درجات الحرارة ولاتتجاوز نسبة الإصابة 7%. تظهر الأعراض في صورة بقع شاحبة اللون علي السطح العلوي يقابلها نمو زغبي علي السطح السفلي للأوراق يظهر بوضوح في الصباح الباكر وعند زيادة الإصابة تلتحم البقع وتكبر وتصفر الأوراق وتسقط مما بؤدي إلي قلة المحصول ونسبة الزيت . ويسبب المرض في الكانولا فطر Peronospora parasitica أما في عباد الشمس فيسببه فطر Peronospora halstedii.
رابعاًً: أمرض البياض الدقيقي mildew Powdery



يصيب هذا المرض كلاً من عباد الشمس والكانولا ويسببه فطرErysiphe cichoracearum في عباد الشمس و فطر Erysiphei polygoni في الكانولا.
وتظهر الإصابة علي لبسطح العلوي في صورة بقع بيضاء ذات مظهر دقيقي يقابلها علي السطح السفلي بقع صفراء وعند توافر الظروف البيئية خاصة إرتفاع درجة الحرارة والرطوبة يغطي النمو الدقيقيجميع أسطح الأوراق مما يؤدي لسقوطها.
خامساً: مرض الصدأ في عباد الشمس Rust Disease
يسببه فطرPuccinia helianth ويعتبر من أهم أمراض المجموع الخضرى التي تصيب عباد الشمس في مصر خاصة في المناطق الرطبة حيث تصل شدة الإصابة إلي 65% مما يؤدي لنقص في محصول البذور يصل إلي 16% وتقليل




محتوي الزيت بمعدل من 8 إلي 11%

وتظهر الإصابة علي شكل يثرات مميزة للفطر لونها بني محمر علي السطح العلوي للأوراق وقد تتحد مع بعضها مكونة بثرات كبيرة تتحول إلي اللون الأسود ثم تتساقط الأوراق عندة إشتداد الإصابة.
سادساً: مرض الصدأ الأبيض في الكانولاRust Disease White



يسبب هذا المرض فطر Albugo candida وتظهر الأعراض علي الأراق والقرون والأفرع والشماريخ الزهرية في صورة نقط أوبثرات بيضاء مرتفع عن السطح السفلي للأوراق يقابلها بقع صفراء علي السطح العلوي وتقدر الخسائر التي يسببها هذا المرض ما يقرب من 15 إلي 50% في محافظات كفر الشيخ ودمياط والبحيرة.
سابعاً: عفن القرص في عباد الشمس Head Rot Disease
يسببه العديد من الفطريات أهمهم sclerotiorum Sclerotina Botrytis cineara, Rhizopus spp.



ويضهر المرض علي أقراص عباد الشمس عند النضج في صورة بقع مائية ما تلبث أن تتحول للون البني وتصبح الأنسجة لينة وهشة وتنتشر البقع علي أجزاء القرص الذي يتلون باللون الأبيض نتيجة لنمو ميسليوم الفطر وقد لاتتكون بذوراً في القرص نتيجة لللإصابة.
وهذا المرض ينتشر بصفة خاصة في المناطق الرطبة والتي تروي بالرش خاصةً في حالة الإفراط في الري مع إنخفاض درجات الحرارةز ويسبب هذا المرض خسائر فادحة في المحصول والمحتوي الزيتي له.
المقاومة:
1- إتباع دورة زراعية مع حرق مخلفات المحصول أو إجراء حرث عميق لدفنها حيث تعتبر من أهم مصادر العدوي.
2- زراعة الأصناف المقاومة.
3- الإعتدال في الري والتسميد الزوتي مع عدم إغفال التسميد البتاسي والعناصر الصغري.
4- الإهتمام بإزالة الحشائش مع عدم تقليل مسافات الزراعة حتي لا تزيد الكثافة النباتية وبالتالي ترتفع الرطوبة.
5- إجراء تعفير بالكبريت الميكروني بمعدل 20كجم للفدان بعد شهرين من الزراعة في الفول السوداني.
6- الرش الوقائي بأحد المبيدات الموصي بهااء عند بداية ظهور الإصابة علي أن يكون الرش ثلاث مرات بفاصل 15 يوم مع مراعاة إضافة مادة ناشرة (ترايتون- ب).
أعفان الثمار في الفول السوداني والأفلاتوكسينPod rot complex and Aflatoxins





تعتبرأمراض أعفان الثمارPod rots من أهم الأمراض المسببة لفـقـد كمي ونوعي للمحصول في مصر هذا إلى جانب تلوث الثمار بالأفلاتوكسين (Aflatoxin contaminations) حيث يمثلان معاً أحد أكبر المعوقات التي تواجه منتجي ومصدري الفول السوداني في مصر. وتسبب أعفان الثمار العديد من الفطريات وتختلف تبعاً لمظهر الأعراض من عفن بني ( (R. solani عفن وردي (F. moniliforme) تدهور تام (ويسببه العديد من الفطريات أهمها . M) phaseolina, Pythumi myriotylum, S. rolfsii هذا إلي جانب العفن الأصفر الذي يسببه فطر (Aspergillus flavus, A. parasiticus).
وإن كان بمكن أثناء عملية الفرز بعد الحصاد إستبعاد الثمار التي تحمل أعراض أعفان الثمار إلا إنه لايمكن إكتشاف تلوث الثمار بالأفلاتوكسين إلا بالتحليلات الكيماوية (TLC,GLC) إذ أنه لا تبدو أي أعراض علي الثمار الملوثة إلا تحت ظروف معينة من إرتفاع الرطوبة ودرجة الحرارة حيث تظهر جراثيم الفطريات المفرزة لللأفلاتوكسين الأخضر و الأصفر المخضر على البذرة من الخارج أو داخلها وهو ما يعرف بالعفن الأصفر Yellow mold
ولمزيد من المعلومات عن هذه المشكلة الخطير يرجي قراءة الموضوعات ذات الصلة بالموقع
أمراض النيماتوداNematodes
تنتشر النيماتودا في حقول المحاصيل الزيتية وتمثل مشكلة كبيرة خاصةً في الفول السوداني وتعتبر من الأمراض





التي تسبب نقصاً كبيراً في المحصول يصل إلي 50% في الأراضي الموبؤة وأهم هذه الأمراض هو مرض تعقد الجذةر النيماتودي ويسببه جنس
ويسببه جنس .Meliodogynae spp خاصةً M. arenaria, M. javonica, M. incognita وتظهر الأعراض علي هيئة بقع منتشرة في الحقل يكون فيها النباتات مصفرة الأوراق فيما يشبه نقص الغناصر مع تقزم للنباتات وعند إقتلاع النباتات يلاحظ وجود عقد نيماتودية أو تورمات علي الجذور والقرون. وتشجع وجود الرطوبة العالية مع إرتفاع درحة الحرارة من إنتشار الإصابة وشدتها.
المقاومة
1- الإهتمام بالحرث المتعامد في إتجاهين وترك الأرض فترة للتشميس.
2- الإهتمام بإزالة الحشائش.
3- التأكد من خلو السماد البلدي من أي عدوي مع التوقف عن عمليات نقل التربة.
4- المعاملة بمبيدات فيوردان ، نيماكور بمعدل10كجم للفدان أو موكاب 30 كجم للفدان حيث تتم المعاملة بالتكبيش عند الزراعة أسفل الجور أو عند تمام الإنبات كما يمكن خلطها مع السوبر فوسفات أو بالرمل لضمان تجانس التوزيع.
5- في حالة الإصابات الشديدة يمكن إجراء عملية التشميس.
Eng / Jamal h Jahlan

Mineral nutrient composition of vegetables, fruits and grains

Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines


Abstract

Reports of apparent historical declines in mineral nutrients of vegetables, fruits and grains, allegedly due to soil mineral depletion by agriculture, triggered this critical review. Comparisons of food composition data published decades apart are not reliable. Over time changes in data sources, crop varieties, geographic origin, ripeness, sample size, sampling methods, laboratory analysis and statistical treatment affect reported nutrient levels. Comparisons with matching archived soil samples show soil mineral content has not declined in locations cultivated intensively with various fertilizer treatments. Contemporaneous analyses of modern versus old crop varieties grown side-by-side, and archived samples, show lower mineral concentrations in varieties bred for higher yields where increased carbohydrate is not accompanied by proportional increases in minerals – a “dilution effect”. Apparent declines, e.g., the extreme case of copper from −34% to −81%, represent small absolute changes: per 100 g dry weight vegetables have 0.11–1.71 mg (1555% natural range of variation), fruit 01–2.06 mg (20,600% range), and grains 0.1–1.4 mg (1400% range); copper composition is strongly subject to the dilution effect. The benefits of increased yield to supply food for expanding populations outweigh small nutrient dilution effects addressed by eating the recommended daily servings of vegetables, fruits and whole grains.

Keywords

Vegetables
Fruit
Grains
Mineral nutrients
Nutrient composition
Nutrient historical decline
Food analysis
Food composition






1. Introduction

Internet articles and popular press frequently state that the mineral nutrient composition of vegetables, fruits and grains has been declining over the past 50 years. These sources may cite, as supporting evidence, scientific literature that compared nutrient data from food composition tables published many years apart, even though the authors of the scientific literature cited often explicitly recognized limitations of their data and analysis. Apparent historical declines in food mineralnutrient content derived from food composition table comparisons have been attributed by popular press authors to a decrease in the levels of micronutrients in the soil due to depletion by intensive agriculture, even when that was not a cause identified in the scientific articles they cite.
The objectives of this article are to review and analyze the available scientific evidence for changes in the mineral nutrient composition of vegetables, fruits and grains, and their possible causes, and to assess the significance of validated analytical findings with regard to the nutritional well-being of consumers.

2. Background: public perception based on the popular press

In the popular press and on the internet, a very frequently repeated quotation is, “A Kushi Institute analysis of nutrient data from 1975 to 1997 found that average calcium levels in 12 fresh vegetables dropped 27%; iron levels 37%.” The Kushi Institute (http://www.kushiinstitute.org/) is an organization that describes itself as having a “macrobiotic approach to health and healing” that promotes healing foods and lifestyle changes for health improvement. The numbers come from an article written by Jack (1998), a health writer associated with the Kushi Institute, comparing U.S. Department of Agriculture (USDA) food composition tables from 1997 versus 1975, to identify changes in the levels of nutrients in fresh foods. The quotation comes from an open letter to the U.S. Secretary of Agriculture, Dan Glickman, written by Organic Gardening Senior Editor Cheryl Long (Long, 1999). Thus, while the original source of information, USDA food composition tables, is authoritative, a direct comparison of the values does not take into consideration differences in crop varieties or methods of nutrient analysis, and provides no information on potential causes of reported differences. The Kushi Institute report was apparently not subjected to scientific peer-review.
Thomas (2000) prepared a report on historical nutrient content changes that was published by Mineral Resources International (UK) Ltd., an ingredient supplier and manufacturer of liquid and tablet nutritional supplements using minerals and trace minerals from Utah’s Great Salt Lake. Thomas compared data on 27 varieties of vegetables, 17 varieties of fruit, 10 cuts of meat and some milk and cheese products, using nutrient composition tables from the U.K.’s McCance and Widdowsons The Composition of Foods first edition published in 1940 compared with the data for the same foods from the fifth edition published in 1991. He concluded that the results demonstrated that there has been a significant loss of mineralmacronutrients and trace elements in these foods over that period of time, with the most dramatic losses relating to the copper (Cu) present in vegetables between 1940 and 1991 (76%) and zinc (Zn) between 1978 and 1991 (59%). He suggested that the results of the study can be linked to recent dietary, environmental and disease trends, including contamination of vegetables, fruits and meat with pesticides, hormones, heavy metals, antibiotics and food additives, trace mineral depletion of the soil, excessive use of nitrogen-phosphorus-potassium (N-P-K) fertilizers, changes in crop varieties, loss of micro flora/fauna within the soil, etc. However, he provided no supporting evidence for these factors as explanations for the differences he observed.
Another widely cited report is an Earth Talk column written and edited by Scheer and Moss (2011) for E – The Environmental Magazine, which is published on theScientific American website. This is often cited as an article published in the journalScientific American, which is not correct. The column, written as a response to a reader’s question about nutritional differences in a carrot eaten today from one eaten in 1970, states categorically that fruits and vegetables grown decades ago were much richer in vitamins and minerals than the varieties available today and that “the main culprit in this disturbing trend is soil depletion: Modern intensive agricultural methods have stripped increasing amounts of nutrients from the soil in which the food we eat grows. Sadly, each successive generation of fast-growing, pest-resistant carrot is truly less good for you than the one before.” They cite as supporting evidence the Kushi Institute study and two scientific studies (Davis et al., 2004Mayer, 1997; both discussed in detail below) despite the fact that none of these studies present any evidence that a change in soil mineral nutrient content is an important causative factor.

3. Scientific evidence from food composition table comparisons

One of the first and most frequently cited peer-reviewed scientific papers on apparent historical changes in the mineral content of fruits and vegetables was published by Mayer in 1997. She compared the results of analyses for 8 mineral nutrients: sodium (Na), K, calcium (Ca), magnesium (Mg), P, iron (Fe), Cu, and Zn, in 20 fruits and 20 vegetables, raw, peeled, from two U.K. Chemical Composition of Foods reports dating from 1960 (reporting results from analyses done in 1936) and 1991. The foods were not dried or rehydrated and dry pulses were excluded. She reported finding statistically significant reductions in the levels of Ca (–19%,P = 0.014), Mg (–35%, P < 0.001), Cu (–81%, P < 0.001), and Na (–43%, P = 0.013) in vegetables and Mg (–11%, P = 0.016), Fe (–32%, P = 0.002), Cu (–36%, P = 0.006) and K (–20%, P < 0.001) in fruits. The only mineral nutrient that showed no significant difference over the ∼50 year period was P. Mayer noted that potential sources of deviation included possible differences in the methods of sampling; methods of analysis (although older methods were characterized as taking longer but no less accurate); mixed sources of data for the 1991 edition; greater use of imported and “out of season” produce; different storage and ripening systems; and changes in varieties bred for higher yield, response to modern methods of agriculture, post-harvest handling qualities and cosmetic appeal. She noted that water content increased significantly and dry matter content decreased significantly in fruits between the new and old data sets but did not attempt to correct for moisture content. Mayer stated that “in principle, modern agriculture could be reducing the mineral content of fruits and vegetables” but noted that evidence was needed to find out if this was significant. She did not demonstrate a cause-and-effect relationship between her findings and soil mineral content, nor did she present evidence that any of the nutrient content changes were of importance to human nutrition. She identified these as areas for future research.
Lyne and Barak (2000) reviewed the evidence for depleted soils causing a reduction in the mineral content of food crops as suggested by comparison of USDA food composition data. They found that for three major cations: Ca2+, Mg2+, and K+ of selected fresh produce crops, there was no real loss in the balance of mineral nutrition in food crops. They stated that widespread use of soil testing and fertilizers as part of the strategy for the increasing yields of modern agriculture argues strongly against the notion of widespread soil depletion of mineral nutrients. They concluded that although it may be hypothesized that a decline in soil quality has led to an apparent decline in food nutrition, more controlled studies are needed to factor out the many variables associated with the food composition tables and this type of analysis.
Bringing more statistical rigour to the food composition table comparison approach, Davis et al. (2004) compared USDA Food Composition Table data from 1950 and 1999, for water, energy, protein, fat, carbohydrate, ash, Ca, P, Fe, vitamin A, thiaminriboflavinniacin, and ascorbic acid in 39 vegetables, 3 melons and strawberries. Fibre was excluded due to the change of analysis from “crude” to “dietary” fibre. Dry matter content was calculated by difference with the water content, and 1950 nutrient content values were adjusted to the same moisture level as the 1999 data by multiplying them by the ratio of dry matter in 1999 samples over dry matter in 1950 samples.
Davis et al. (2004) found that changes for individual foods could not be assessed reliably due to large uncertainties in the mineral nutrient content data but grouped together, statistically significant decreases from 1950 to 1999 were seen for Ca (–16%, P = 0.014), P (–9%, P = 0.002), and Fe (–15%, P = 0.005). Sources of uncertainties the authors identified in the results included sampling (geographic including imported versus locally grown crops, seasonal, and portion of outer leaf or stem considered edible); cultivars tested; analytical methods (e.g., early values for Fe tended to be high according to Davis et al., 2004); environment (climate, distribution methods, location of production, etc.); and the source of data, since the 1950 values were derived mostly from the literature rather than nationally representative composites. The authors stated that despite the popular interpretation that mineral nutrient decreases in produce may be due to mineral deficiencies in soil, they found that about 28% of the ratios (R-values) of the 1999/1950 values of nutrient content for each food commodity exceeded 1 (i.e., nutrient content increased), which was difficult to reconcile with a broad mineral-depletion hypothesis. They concluded that factors other than soil mineral content seemed to have primary control of food mineral content.
Exceptions to this are iodine (I) and selenium (Se). These two minerals are accumulated by plants from the soil in significant concentrations despite the fact that they are not essential mineral nutrients for plants. At low levels Se has been shown to be a “beneficial element” for plants; observations of positive effects of low levels of I on plant growth have been reported but a scientific basis for I as a plantmicronutrient has not yet been elucidated (Smoleń et al., 2014).
A possible explanation for lower mineral nutrient concentrations put forward byDavis et al. (2004) was related to changes in cultivars selected for yield, rapid growth, pest resistance, herbivory resistance, and number versus size of seeds. They suggested that these changes may result in differences between cultivars in their ability to extract soil minerals, transport them within the plant, and to synthesize proteins, vitamins and other nutrients. However, they recognized that these differences are unpredictable in magnitude. Thus, historical nutrient content differences were attributed to a combination of several factors. Cultivar selection for yield may have changed acquisition and synthesis of nutrients and enhanced the dry matter or carbohydrate (starch, sugar and/or fibre) and water fractions of vegetables without proportionate increases in other nutrients (i.e., a “dilution effect”). On the other hand, a large and unpredictable degree of genetic variability caused other cultivars to have increased levels of nutrients. The authors noted that plants cannot grow or be viable commercial vegetable and fruit crops without acquiring the minerals and synthesizing their own needed broad range of nutrients. They reminded readers that currently available vegetables and fruits remain broadly nutrient-dense foods so a diet rich in whole foods including vegetables, fruits, whole grains, nuts and beans will still provide the nutrients we need for good health.
White and Broadley (2005) compared food composition data from both the U.K. (1930s vs. 1980s) and the U.S. (1930s vs. 2004) to further test the hypothesis that the mineral composition of vegetables and fruits or nuts shows historical variation. They found that, when grouped, in the U.K. there were significant decreases since the 1930s in the average concentrations of Cu (–73%, P < 0.001), Mg (–19%,P = 0.023), and Na (–50%, P = 0.004) in dry matter of vegetables and Cu (–34%,P = 0.007), Fe (–15%, P = 0.036) and K (–10%, P = 0.026) in dry matter of fruits. From the U.S. data they calculated significant declines in the average concentrations of Ca (–37%, P < 0.001), Cu (–40%, P = 0.028) and Fe (–75%, P < 0.001) in vegetables and Cu (–36%, P = 0.010), Fe (–72%, P < 0.001) and K (–13%, P = 0.043) in fruits. However, they too concluded that there was insufficient data to assess mineral content changes in any one crop, that there is considerable genetically-based variation in mineral nutrient content between horticultural crop genotypes, and that the observed changes in mineral composition are unlikely to be significant in overall dietary terms.

4. Contemporaneous laboratory analyses compared to historical mineral nutrient data

In a report prepared by scientists from Food Standards Australia New Zealand (FSANZ) in response to news media attention to the Mayer (1997) article,Cunningham et al. (2002) compared P, Na, Ca, Mg, Fe and Zn levels measured in 44 types of Australian fruits and vegetables purchased in Melbourne, Australia, in 2000 or 2001, with results of analyses conducted between 1981 and 1985 for the same items of produce purchased in Sydney, Australia. They found no significant or consistent differences in their mineral content over time. Explicit limitations that they noted included that the samples were collected in different locations, sometimes at different times of the year, possibly at different stages of ripeness, in many cases were different varieties, and older analyses were conducted using a less sensitive analytical technique. They concluded that any minor changes from year to year in mineral levels in these foods would be very unlikely to be of dietary significance.
Ekholm et al. (2007) conducted laboratory analyses of the content of the mineral nutrients Ca, K, Mg, P, cobalt (Co), Cu, Fe, manganese (Mn), nickel (Ni), Se, and Zn, as well as the toxic minerals aluminum (Al), cadmium (Cd), and lead (Pb) from samples of 18 vegetable products, 16 fruits or berries and the cereals wheat, rye, barley and oats from Finland. The results were compared with laboratory mineral nutrient analysis results from the same foods (28 pairs for comparison) published 30 years previously. Their findings were that of the major mineral elements Ca, K, Mg, and P, only the content of K had decreased significantly (P = 0.038), mainly in cereals and only moderately in other food crops. However, the content of several of the trace minerals decreased significantly on a weight per dry matter basis: Mn (P = 0.050), Zn (P < 0.001), Cu (P = 0.048), and Ni (P < 0.001), and the levels of the toxic minerals: Al (P < 0.001), Pb (P = 0.043), and Cd (P = 0.009). The levels of Se increased (P = 0.001) due to increased use of Se as a mineral nutrient in agricultural fertilizers. They attributed the changes in part to new cultivars but recognized that one of the limitations in this study was that the data from the 1970s came from foodstuffs almost completely produced in Finland whereas for the current data many of the foodstuffs were imported.
Bruggraber et al. (2012) and Bruggraber et al. (2013) compared results of current laboratory analyses with U.K. food composition table data obtained from analyses conducted in the 1930s and 1980s, to evaluate any historical changes in the Fe content of vegetables, fruits, and cereal products. They found remarkably little historical difference in Fe content of vegetables, legumes and pulses. Only fruit showed a small but statistically significant decrease of −0.35 mg/100 g (95% CI −0.68 to −0.01) in Fe from the 1930s to the 1980s. There was insufficient published data to allow for comparison of cereal products. Davis (2013), in a Letter to the Editor commenting on the study by Bruggraber et al., noted that the observed differences in Fe content are only “apparent” for several reasons. Bruggraber et al. depended on historical data from different laboratories in different eras. They had large uncertainties due to inadequate numbers of samples to cope with large natural variations among samples of the same food − the median Coefficient of Variation for Fe was 53% in the analysis by Davis et al. (2004) of 43 U.S. vegetables and fruits. Also, Davis (2013) noted that the statistical analysis by Bruggraber et al. was based on means and parametric Confidence Intervals but the distributions of changes have large deviations from normality due to probable outliers, skewing and kurtosis.
Avoiding the potential pitfalls of depending on historical analytical data, Fan et al., 2008aFan et al., 2008b conducted laboratory mineral nutrient analyses of wheat grains and soil samples archived over the last 160 years by the Broadbalk Wheat Experiment, established in 1843 at Rothamsted, U.K., and run continuously ever since. They found that the grain concentrations of Zn, Fe, Cu and Mg remained stable between 1845 and mid 1960s but since then significant decreases were seen in Zn (P = 0.004 to <0 .001="" cu="" em="" style="box-sizing: border-box; margin: 0px; padding: 0px;">P
 = 0.021 to <0 .001="" and="" em="" mg="" style="box-sizing: border-box; margin: 0px; padding: 0px;">P = 0.030 to =0.004), which coincided with the introduction of semi-dwarf, high-yielding cultivars. With regard to the hypothesis that soil nutrient levels are a causative factor, they found that the mineral concentrations in the archived soil samples either increased or remained stable. Reasons for this included inputs of Mg from inorganic fertilizer, Zn and Cu from farm yard manure, and Zn also from atmospheric deposition. The observed decreases in wheat grain mineral content were independent of whether the crop received no fertilizers, inorganic fertilizers or organic manure. Multiple regression analyses showed that the two highly significant factors associated with the downward trend in grain mineral concentration were increasing yield and harvest index (i.e., the weight of the harvested product, such as grain, as a percentage of the total plant weight of the crop, which for wheat was measured as the aboveground biomass due to the difficulty of obtaining the root biomass).
Fan et al. (2008b) noted that the Se concentration of the grain had a much larger range and was significantly higher (P < 0.001) in unfertilized plots compared to inorganic fertilizer or manure treated plots and higher in the unfertilized plots in periods before 1920 or after 1970 than during 1920–1970. These temporal and fertilizer-related patterns of Se decrease in the grain were influenced mainly by sulfur (S) inputs from fertilizers and atmospheric deposition of S, which increasedsulfate antagonism of selenium uptake, plus a small dilution effect. For these reasons, despite the observed long-term trend (not statistically significant) of an increase in soil Se concentration, primarily due to atmospheric Se deposition, the grain Se content did not increase.
Thus, the findings of Fan et al. from the Broadbalk Wheat Experiment are conclusive with regard to the lack of significant historical decreases in soil mineral levels in the fields they studied and that verified declines in mineral nutrient concentrations in wheat grain were associated with varieties having an increased grain yield. Nevertheless, it is still worthwhile exploring what role other potential causative factors could play in “apparent” historical mineral nutrient declines in vegetables and fruits.


5. Field trials to test hypotheses regarding historical mineral nutrient changes

McGrath (1985) used field experiments to look at the “dilution effect” of increased yields on the mineral nutrient concentrations in grain of winter wheat. He noted that concentrations of P, K, sulfur (S), Ca and Mg varied twofold (n = 238); Fe, Zn and Cu varied threefold (n = 236); and Mn varied by a factor of 5 (n = 236). While the potential for decreases was predictable, e.g., for Zn and Fe which move slowly from the soil into plant roots and thus might not meet the demand of a rapidly-growing crop, a decrease in these minerals with increased yield was not found in these analyses. There were small, statistically significant (P < 0.01) varietal differences but they were not large enough to be of agricultural importance; the overall changes in levels in crops with increased yields were positive, except for Mn which did not change.
Farnham et al. (2000) examined variations in Ca and Mg concentrations in a USDA collection of 19 inbred and 27 commercial F1 hybrids of broccoli grown side-by-side. Broccoli was chosen because it is a good vegetable source of Ca and Mg, and the bioavailability of Ca from broccoli is comparable to that from milk. Levels varied for Ca (1.99–4.35 mg/g dry weight) and Mg (1.94–3.74 mg/g dry weight) among the hybrids within the same growth year due to genetic differences—concentrations were significantly negatively correlated (P < 0.05) with broccoli head weight due to greater density, not size. With the inbred lines, the concentration of Mg, but not of Ca, was negatively correlated (P < 0.05) with head density. These mineral nutrient content differences correlated with head density are examples of adilution effect. However, there was also a significant (P < 0.05) environmental effect on both Ca and Mg concentrations when comparing two different growing seasons (1996 and 1997). Environmental and genotype-by-environment components of variance for Ca concentration were equal and both were ten times greater than the genotypic component of variance, while for Mg the environmental, genotypic and genotype-by-environment components of variance were of a similar magnitude.
Garvin et al. (2006) also used two replicated field trials rather than published data to examine historical shifts in mineral micronutrient concentration (Fe, Zn, Cu and Se) in 14 different varieties of U.S. hard red winter wheat from production eras ranging from 1873 to the late 1990s. They found significant effects on micronutrient content of cultivation location (Fe, Cu, P and Zn with P < 0.001, Se was not significantly different) and significant differences between the genotypes (P < 0.001), whose genetic profiles differ due to more than a century of crop development. When the data was organized by release date and yield, Zn content was seen to have decreased significantly with both increasing yield and more recent variety release date at both locations (P < 0.0001 and P < 0.05); Fe content decreased significantly with increasing yield and more recent variety release date at one location (P < 0.05); and Se content decreased significantly with more recent release date at one location (P < 0.01). With regard to Cu content, it was lower in grain from one site compared to the other (P < 0.001) but there was no correlation with variety release date.
Murphy et al. (2008) used a randomized complete block design nursery to grow 56 historical spring wheat cultivars widely grown in the Pacific Northwest region of the U.S.A. from 1842 to 1965, and 7 modern spring wheat cultivars widely grown in Washington State in 2003. Thirty-seven cultivars were in the soft white wheat market class, 20 were hard red, four were hard white and two were soft red. There were three replicates of each cultivar in one growing season and four replicates of each the following year. Yield and concentrations of Ca, Cu, Fe, Mg, Mn, P, Se and Zn were measured. They found that the modern cultivars had higher yields than the historical cultivars (P < 0.0001). The historical cultivars had significantly higher grain mineral concentrations than the modern cultivars: Cu (P < 0.001), Fe (P < 0.01), Mg (P < 0.001), Mn (P < 0.05), P (P < 0.001), Se (P < 0.05) and Zn (P < 0.001), the exception being Ca for which the decline in modern cultivars was not statistically significant (P = 0.07). There were highly significant variations in the concentrations of each mineral between cultivars (P < 0.0001) and a significant genotype-by-year interaction for each mineral as well, although statistical analyses showed that most of the variation was due to genotype rather than year. Overall yield was negatively correlated with mineral concentration for Ca (P < 0.001), Cu (P < 0.001), Mg (P < 0.001), Mn (P < 0.01), P (P < 0.001) and Se (P < 0.001), but not significantly for Fe and Zn. These results can be compared to those of Fan et al., 2008aFan et al., 2008b described above, who reported that levels of Cu, Mg, Fe and Zn were steady in cultivars with release years from 1845 to the mid-1960s and then declined significantly in more modern semi-dwarf cultivars with high yields. Murphy et al. postulated that the lack of a negative correlation between yield and concentrations of Fe and Zn in their analyses may be because the content of these two mineral nutrients is influenced by the high protein gene Gpc-B1 which may be subject to positive selection pressure for higher yield where protein content is a consideration. Regressions of mineral concentrations on year of cultivar release, separated into market classes, showed significant decreases among soft white cultivars for all minerals except Ca and Mg. However, among hard red cultivars, only Zn decreased with release date whereas Mg increased slightly over time. All other mineral nutrients remained stable among the hard red cultivars released over the past 120 years. Murphy et al. suggested that the decline in concentrations of most minerals in soft wheat might be due to selection pressure for lower ash content, since high ash content in flour gives a darker colour to finished products which is undesirable with regard to product quality. However, they noted that generally the correlations were weak and exceptions existed for high yielding cultivars with moderately high levels of certain minerals, such as P, Fe, Mg, Mn and Se, indicating that there is genetic potential for development of cultivars with high mineral nutrient levels, particularly for Cu, Zn and Mn.
Ficco et al. (2009) used side-by-side cultivation in two locations and two growing seasons to study mineral nutrient (Ca, K, Mg, Mn, Na, Cu, Fe, and Zn) and phytatelevels in Italian durum wheat cultivars. They studied 10 old genotypes released between 1900 and 1973, 58 cultivars released after 1974 that carried semi-dwarfing reduced height Rht genes, and 17 advanced breeding lines with high yield potential. They noticed a direct soil content effect on levels of Na and K in the grain, and at one site a higher soil level but lower grain level of Mn. Of the two genotypes with the highest grain Fe content, one was a modern genotype and one an old genotype; for Cu the modern genotypes had a higher content. For inorganic P, Cu, Fe, Na and Zn, the modern genotypes had the widest ranges. No clear trends for historical declines in mineral nutrient composition were observed comparing modern genotypes and advanced breeding lines with old genotypes. Their results suggested a significant dilution effect only for Mg and Zn (both P < 0.001) and not for Fe.
Rosanoff (2013) combined analytically determined Mg food content change results such as those of Fan et al. (2008a)Murphy et al. (2008) and Ficco et al. (2009), with a comparison of the Mg content listings in food composition tables of the U.K., USDA, and Health Canada from different publication dates, to conclude that a historical decrease in the Mg content of grains, fruits and vegetables has occurred. From these data sources she derived estimates that grain Mg concentrations have dropped by 7 to 25% and vegetable Mg concentrations have dropped by 15 to 35%. She associated her calculations of food Mg content and food supply data from the USDA with rates of cardiovascular disease (CVD) mortality data from the U.S. NIH. Rosanoff concluded that the results suggested a causal relationship between CVD mortality peaking in the U.S. in 1968 when Mg in the U.S. food supply reached its nadir and then gradually declining as food Mg supply rose in the years up to the present. She recognized that the decline in CVD mortality can be explained mostly by medical treatments and medications, increased exercise and decreased smoking. However, she drew a parallel between the U.S. trend and the rise of rates of CVD mortality, obesity, metabolic syndrome and non-communicable diseases in societies transitioning from traditional diets to modern processed food diets. Rosanoff’s main conclusion was that rising global mortality from CVD may be due to lower dietary intakes of Mg (and other nutrients) caused by declining crop content, which she attributed primarily to the change to high-yield varieties, and also to food processing losses. While the Institute of Medicine (1997) has recognized that Mg is a required cofactor for over 300 enzyme systems and that Mg depletion is linked to CVD, neuromuscular diseases, diabetes mellitus, and renal wasting syndromes, Rosanoff’s use of data from food composition tables published in different years as supporting evidence for a historical decline in food Mg content is not valid. The linking of CVD mortality rates to postulated historical declines in the Mg content of foods is perhaps oversimplified.

6. Analysis and discussion

Davis (2009) provided a summary and reanalysis of the scientific evidence available up to the time of writing regarding apparent historical decreases in fruit and vegetable nutrient composition and its potential causes. This reanalysis involved calculating the ratios (R) and distribution-independent 95% Confidence Intervals of the nutrient content between new/old varieties of the food using the nonparametric approach of testing the null hypothesis that ratios of group medians equaled 1. Davis preferred a nonparametric approach that provides more conservative results over the statistical approach used in previous studies. Calculating group geometric means and especially the use of a t-test (the statistical approach used in the articles by Mayer, 1997; and by White and Broadley, 2005) was determined to be insufficient to account for the skew of mineral nutrient analysis data, which were shown to deviate significantly from a normal distribution (Davis et al., 2004Davis, 2006). Of the 33 median R values Davis (2009) recalculated, only 11 (33%) of them indicated a statistically significant (P < 0.05) apparent nutrient content decline (i.e., R < 1). No statistically significant increases in mineral nutrient content (i.e., R > 1) were observed. Among the statistically significant ratios (R), the most pronounced apparent declines in mineral nutrients were seen in vegetables. They ranged from approximately 80% for Cu (questionably large but strongly subject to the dilution effect) to approximately 17% for Ca. The decline in Na appeared to be about 40% and the decline in Mg appeared to be about 23%. A statistically significant decline in Fe in vegetables was seen only in U.S. data for a larger group of vegetables (Davis, 2009; Fig. 6). For the content of P in vegetables, the ratio of medians showed a small but statistically significant apparent decline in U.S. data for a large group of vegetables (Davis, 2009; Fig. 3) but no significant change in U.K. data for mixed crops including vegetables, fruits and nuts (Davis, 2009; Fig. 6). In fruits, apparent declines in the median mineral nutrient content were relatively small and not statistically significant (P > 0.05, Davis, 2009; Figs. 2 and 5).
Food composition tables and databases, such as Health Canada’s Canadian Nutrient File (2015a), the U.S. Department of Agriculture’s National Nutrient Database for Standard Reference, Release 28 (SR28) (2015), Public Health England’s Composition of Foods Integrated Dataset (2015), the FSANZ Nutrient Tables for Use in Australia (2015), and the Food and Agriculture Organization (FAO) of the United NationsInternational Network of Food Data Systems Food Composition Databases (2015), provide the foundations for the development of educational programmes on choosing healthy diets that help consumers to make informed choices with regard to thenutritional quality of foods. These databases also provide the basis for assessing population nutrient intake in combination with food intake surveys. However, comparison of historical food composition tables is not a reliable way to determine changes in nutrient composition of foods over time. Their data represent snapshots of nutrient content for foods available on the market at a particular time. There are changes in the genetic varieties of crops on the market over time, large ranges of variation in content of different nutrients from variety to variety of the same crop, and differences in geographic origin, season, degree of ripeness, sample sizes, sampling methods, analytical methods, statistical methods, etc.
With regard to analytical methods, the levels of minerals for most foods in SR28 (USDA, 2016a) were determined by AOAC Official Methods of Analysis, such asinductively coupled plasma − emission spectrophotometry (AOAC 984.27) for Ca, Fe, Mg, P, Na, K, Zn, Cu and Mn, a method that was the subject of Final Action consideration by AOAC in 1986. Preparation involves digesting the test samples in HNO3/HClO4 (a wet oxidation process). For some records in SR28, minerals except for P were determined by an atomic absorption method (AOAC 985.35, Revised First Action 1997) for which samples are prepared by dry ashing in a muffle furnace at 525 °C; determination of P in these cases was by a colorimetric method (AOAC 2.019, 2.095 and 7.098, published in AOAC (1980) but involving a method dating from 1957) with sample preparation by wet ashing. This colorimetric method was originally developed for determination of total P in fertilizers; it is listed as AOAC 957.02 in the current Official Methods database (AOAC International, 2016) and the latest revision (in 1998) for colorimetric determination of total P in foods is AOAC 995.11. Additional details on the mineral nutrient analytical methods used by the USDA are available from the SR28 Documentation and User Guide (USDA, 2016a).
Much of the food mineral nutrient values in the Canadian Nutrient File are derived from the SR database (Health Canada, 2015b) so the data was obtained mostly through AOAC Official Methods for atomic absorption (AOAC 985.35) or ICP-ES (AOAC 984.27). One exception is for data from the Canadian Sampling and Nutrient Analysis Program, which were obtained by an inductively coupled plasma/mass spectrometry (ICP-MS) method based on EPA 3051A (U.S. EPA, 2007). With regard to sample preparation, EPA 3051A uses microwave assisted (instead of conventionally heated) digestion with HNO3 or a combination of HNO3 and HCl.
As Mayer (1997) noted, the analytical methods used for the U.K. Composition of Foodsdatabase similarly have evolved and there is no clear conclusion on the extent to which that has influenced reported differences in mineral nutrient composition. The current seventh edition of the Composition of Foods database includes data for many foods analyzed in surveys carried out since the publication of the sixth edition in 2002 and updates where necessary from industry sources, other food composition datasets, and the scientific literature. In the case of carry-over of previous values, they were reviewed by members of the project team to ensure they are still representative of foods currently consumed or else calculations were done to update values. Editions prior to the sixth included data for foods both with and without inedible material or material that may be discarded as inedible by some consumers but in the seventh edition all nutrient values apply to the edible portion as specified in the food name, with edible conversion factors provided in an appendix. Thus, the data reflect changes in food preparation methods, advances in analytical methods, analytical variation, natural ranges of nutrient composition variation, and new varieties of plant foods (Roe et al., 2015).
Attributing different values of mineral nutrient levels in a given food to actual changes in the vegetable, fruit or grain composition over time, when the data are coming from different editions or sources of food composition databases, is inherently a flawed approach since official methods for the analysis of the mineral nutrient content of food have changed over time as the science advances. Some of the very early wet chemistry methods that would have been used in old publications include the 1928 titrimetric method for Al and Fe in plants (AOAC 928.03), 1935 colorimetric method for P in fruits (AOAC 935.45), and 1937 colorimetric method for Fe in plants (AOAC 937.03). Later improvements to these methods such as the 1970 spectrophotometric molybdovanadate method for P in fruits (AOAC 970.39), 1970 gravimetric quinolone molybdate method for P in fruits (AOAC 970.40), and dry ashing/sodium molybdate modifications to the colorimetric measurement of P in method AOAC 995.11 (Pulliainen and Wallin, 1994Pulliainen and Wallin, 1996) allowed for the ongoing use of less expensive but still reliable methods with less toxic reagents. However, the application of modern chemical analytical instrumentation to determine the composition of mineral nutrients in plant-derived foods started with such methods as the 1975 atomic absorption spectrophotometric method AOAC 975.03 for Ca, Cu, Fe, Mg, Mn, K and Zn in plants, a 1980 direct reading spectrographic method AOAC 980.03 for metals in plants, the 1984 ICP-ES method mentioned above, a 1999 variant on the atomic absorption method (AOAC 999.11) for Pb, Cd, Cu, Fe and Zn in foods, and in 2015 an ICP-MS method AOAC 2015.06 for minerals and trace elements in infant formula and adult/pediatric nutritional formula was published (AOAC International, 2016).
The FDA has also published its own Elemental Analysis Manual for Food and Related Products with methods such as ICP-Atomic Emission Spectrometry with microwave assisted digestion (U.S. FDA, 2010) for the determination of 22 nutritive and toxic minerals in foods and an ICP-MS method with microwave assisted digestion (U.S. FDA, 2015) for Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Hg and Pb levels in foods.
It is important to keep in mind that not all of the data in the food composition databases comes from laboratories using official methods of analysis; in part they are derived from articles in the peer-reviewed scientific literature for which researchers used alternate methods. Some of the more recent developments for plant-derived food mineral nutrient analysis include Neutron Activation Analysis, which does not involve chemical preparation techniques (e.g., Baidoo et al., 2014), visual-near-infrared spectroscopy, to a lesser extent mid-infrared spectroscopy andultraviolet spectroscopychlorophyll a fluorescence, X-ray fluorescence, and laser-induced breakdown spectroscopy (Mir-Marqués et al., 2016van Maarschalkerweerd and Husted, 2015Schmitt et al., 2014).
Castanheira et al. (2016) have published European Food Information Resource (EuroFIR) guidelines for the assessment of methods of analysis and proficiency testing with regard to the quality of data to be entered into food composition databases. They note that for some nutrients values from different food composition tables are not comparable mainly due to differences in analytical procedures. Prioritized nutrients for methodological guidance include the minerals and trace elements: Ca, Cu, I, Fe, Mg, Mn, P, K, Se, and Na. They recommended the use of only AOAC, European Committee for Standardization (CEN) and International Organization for Standardization (ISO) methods of analysis for minerals and trace elements. The methods considered appropriate were grouped into ICP-MS for trace elements (Se, I, Zn, Mn), ICP-Optical Emission Spectrometry (OES is also known as atomic emission spectrometry) for minerals present in higher quantities in foods (Fe, K, Na, P, Cu, Ca, Mn), atomic absorption spectrometry (AAS has similar performance to ICP-OES, which is more expensive but has largely replaced AAS), and graphite furnace atomic absorption spectroscopyfor Se, although that has largely been replaced by ICP-MS.
Regarding methods of sample preparation, Castanheira et al. (2016) note that extraction or destruction of organic matter before measurement of minerals and trace elements is generally required but this is a slow process and large sources of contamination can occur. Currently, food organic matrix destruction/removal or extraction is conducted through dry ash, wet digestion or pressure digestion procedures which are available at CEN and AOAC. However, each food matrix may require a different strategy and optimization for complex matrices to separate inorganic from organic components.
The laboratory mineral nutrient analyses of wheat grain varieties and soil samples archived over the last 160 years by the Broadbalk Wheat Experiment (Fan et al., 2008aFan et al., 2008b), completed with identical sample preparation and analytical methods, have helped to demonstrate that historical declines in mineral nutrient content of food crops can be real but that these changes are correlated with increased yield and harvest index, not soil mineral content. This was borne out by other comparisons of historical food composition data (grouped into vegetables, fruit or grains rather than single food comparisons, and adjusted for moisture content) with mineral nutrient analyses from side-by-side plantings of low- and high-yield cultivars, and fertilization studies. These studies have all demonstrated consistent negative correlations between yield and concentrations of mineral nutrients. In fruits, vegetables and grains, usually 80% to 90% of the dry weight yield is carbohydrate so when breeders select for high yield they may be selecting mostly for an increase in carbohydrate with no assurance that other nutrients will increase proportionately.
The Organisation for Economic Co-operation and Development (OECD), an organisation of 34 countries whose mission is to promote policies that will improve the economic and social well-being of people around the world, publishes international Consensus Documents on compositional considerations for new varieties of crops. At the time of writing, for evaluating the safety of novel foods and feeds there are OECD consensus documents on 18 plant and 2 mushroom crops. These documents are authoritative sources of information on the natural range ofmacro- and micro-nutrient content in staple food crops, providing necessary contextual information for assessing whether a new variety of a crop, grown in various locations and conditions, is likely to be as nutritious, more, or less nutritious than conventional varieties of the same crop.
For example, regarding bread wheat, the consensus (OECD, 2003) is that “the average mineral content of a given wheat grain varies significantly from one part of the world to another. This appears to be a function of a number of factors, including the wheat variety, the growing and soil conditions, and fertilizer application. The mineral composition of wheat has more to do with environmental conditions, rather than varietal characteristics.” Davis et al. (1984), whose work is cited in OECD (2003), determined the mean and range of Ca, Mg, P, K, Cu, Fe, Mn, and Zn content, and also chromium (Cr) and Se, in statistically valid numbers of samples of wheat of the following classes (each of which has multiple varieties; 231 varieties in total were analyzed, from 49 growing locations): hard red winter, hard red spring, soft red winter, durum, soft white winter, soft white spring, hard white winter and hard white spring.
Results from Davis et al. (1984) and other authors for selected grains, vegetables and fruits are presented in Table 1 to illustrate how widely mineral nutrient content varies among samples and varieties of a single crop species.

Table 1. Ranges of mineral nutrient content in examples of grains, vegetables and fruits.
ربما تحتوي الصورة على: ‏‏نص‏‏



a
Range units are mg/100 g dry weight; percent as maximum/minimum × 100%; n/a: not available.
b
n values are not available from OECD consensus document tables since they are compilations of published data.
Data sources: 1 Davis et al. (1984)2 Organisation for Economic Cooperation and Development OECD (2016);3 OECD (2002)4 OECD (2004)5 OECD (2015)6 OECD (2012)7 OECD (2010a)8 Farnham et al. (2000)9OECD (2008)10 OECD (2010b).
Eng / Jamal h Jahlan


    مشاركة مميزة

    التربة وقيمة pH

    يوجد نوعان من مقاييس pH لقياس التربة، مقاييس حموضة يتم إقحامها في الأرض ومقاييس pH تقيس الماء والتربة المختلطان في سائل عائم. القانون اليابا...

    المشاركات الشائعة